Question	Answer	Marks	Guidance
1 a	С	2	no mark for choice
	high(est) heat conductivity (1)		allow a (very) good heat conductor
	high melting point (1)		allow will not melt when heated on a stove / does not melt easily
			allow A due to a (fairly) high melting point (1) allow D due to good heat conductivity (1) and either high melting point or low density / lightweight (1) ignore light ignore other properties
b	idea of (close packed) positive metal ions (1) idea electrons interspersed within the particles drawn / sea of electrons / delocalised electrons (1) electrons can move / free electrons / electrons can carry the current (1)	3	Large circle labelled positive ion / metal ion / cation Small circle labelled electron / e / e ⁻ but just a negative sign is not sufficient
			Mention of intermolecular forces / covalent bonds / ionic bonds can only score the electrons can move mark
	Total	5	

Q	uestion	answer	Marks	Guidance
2	(a)	(add up number of electrons) and this is the atomic number (and check on periodic table) (1)	1	 allow has 20 electrons and on periodic table element number 20 is calcium allow element is in Group 2 and Period 4 it has 20 electrons on its own is not sufficient
	(b)	one shared pair of electrons between the chlorine atoms (1) rest of outer shells correct (1)	2	allow electrons to be all crosses or all dots Cl Cl Cl Cl Ignore inner shell electrons even if incorrect do not allow diagams with charges / diagrams with double bonds = 0 marks
	(c)	sodium (atoms) lose electrons (1) chlorine (atoms) gain electrons (1)	2	 allow sodium ions have more protons than electrons not sodium ions lose electrons allow chloride ions have more electrons than protons not chloride ions gain electrons

(d)	(chlorine molecule) gains electron(s) (1)	1	
(e)	$Cl_{2} + 2KI \rightarrow 2KCl + I_{2}$ OR $Cl_{2} + 2I^{-} \rightarrow I_{2} + 2Cl^{-}$ correct formulae (1) correct balancing – dependent on correct formulae (1)	2	ignore state symbols allow = instead of \rightarrow allow any correct multiple including fractions not & or and instead of + allow one mark for correct equation with minor errors of subscript, superscript and case eg $c/2 + 2KI \rightarrow 2KCI + I^2$
	Tota	8	

C	uestion	Answer	Marks	Guidance
3	(a)	weak forces between the layers (1)	2	allow van der Waals' forces between layers / weak intermolecular forces not weak covalent bonds between layers
		which are easy to break (so layers can slide over each other) (1)		
	(b)	large number of strong (covalent) bonds (1)	2	allow giant molecular structure or giant covalent structure / large number of strong bonds (between atoms)
		needs lots of energy to break / AW (1)		allow heat for energy but ignore high temperature any mention of intermolecular bonds / forces scores 0
		Total	4	

Q	uesti	on	Answer	Marks	Guidance
4	(a)		carbon dioxide / CO ₂ (1)	1	ignore CO2 / CO ² ignore steam
	(b)		the protein molecule is denatured / the shape of the protein molecule changes (1)	1	ignore protein molecule is broken down allow structure changes allow intermolecular forces are broken
			Tota	I 2	

Question	Answer	Marks	Guidance
5 a	B (1)	3	A or C scores 0 for the question
	not poisonous (1)		allow ora, eg A is not suitable as it is poisonous (1)
	no smell (1)		allow ora, eg D is not suitable as it has a smell (1)
			allow D since it is not poisonous (1)
b i		2	allow one mark if the correct labels are swapped around
	hydrophobic (tail) (1)		allow a straight line for the tail
	hydrophilic (head) (1)		ignore water loving / water hating
ii	any two from:	2	
	cell walls rupture (1)		allow cell walls break down or burst (1) ignore cellulose breaks down
	(resulting in) loss of (rigid) structure / a softer texture (1)		allow potato becomes softer (1)
	starch grains swell up (1)		allow starch (molecules) swell up (1)
			ignore cells swell up ignore references to surface area
			ignore references to denaturing ignore references to proteins
	Total	7	

Question	Answer	Marks	Guidance
6 a i	W (1)	1	allow sodium / Na
ii	Z (1)	1	allow argon / Ar
iii	W and Y (1)	1	both required but order is unimportant
			allow sodium or Na and chlorine or Cl
b	At least one pair of electrons shared correctly between nitrogen and hydrogen (1)	2	can use all dots or all crosses
			not ionic structures = 0 for the question
			allow Lewis diagrams i.e. without circles
	remainder of structure correct (1)		allow lone pair electrons as two single electrons
	H X N H		ignore inner electrons on nitrogen
C	solid – ions not free / ions cannot move / ions held in a lattice / ions in a giant structure (1)	2	ignore electrons / particles cannot move in a solid
	dissolved in water – ions can move (1)		allow has free ions
			not electrons can move in a liquid
			ignore particles can move in a liquid
	Total	7	

Question	Answer	Marks	Guidance
7 a	melting point of sodium – any value between 90 and 130 (1) atomic radius of rubidium – any value between 0.250 and 0.280 (1)	2	
b	2Na + 2H ₂ O → 2NaOH + H ₂ correct formulae (1) balancing – dependent on correct formulae (1)	2	allow any correct multiple including fractions e.g. $4Na + 4H_2O \rightarrow 4NaOH + 2H_2$ allow = or \leftrightarrows for arrow not 'and' or & for + allow one mark for correct balanced equation with minor errors of case, subscript or superscript e.g. $2NA + 2H_2O \rightarrow 2NaOH + H^2(1)$
C	all have one electron in their outer shell (1)	1	 allow orbit or energy level rather than shell allow have same number of electrons in outer shell (1) allow all lose one electron to make an ion / all lose one electron to get a stable outer shell / all lose 1 electron to get a stable outer octet / all lose 1 electron to get a complete outer shell (1) they all lose 1 electron is not sufficient on its own all have a single electron is not sufficient ignore to make stable atom

Question	Answer	Marks	Guidance
d	$\left \begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	2	two correct electronic structures but no charges award one mark two correct charges with incorrect electronic structure award one mark one structure of 2,8 but unlabelled is not sufficient but allow both have a structure of 2,8 (1) the ionic charges must not be shown in the nucleus award 0 marks for structures with shared electrons One electronic structure must be labelled in some way to indicate which ion is which in order to score two marks. allow answers showing the transfer of electrons providing the same electrons are not shown twice all electrons can be dots or crosses
	Total	7	

C	Questio	n Answer	Marks	Guidance
8	(a)	K (1)	1	allow potassium
	(b)	idea of an attraction or bond(ing) between positive ions and electrons (1)	2	do not allow intermolecular forces / covalent bonding / ionic bonding / metal molecules = 0 for the question
		(closely packed) metal ions and delocalised electrons (1)		 allow positive atoms, cations, positive ions instead of metal ions and free electrons instead of delocalised electrons. allow has electrons free to move instead of delocalised or free electrons / sea of electrons instead of delocalised electrons
				allow mark could be found on a labelled diagram (metal ion)
				free electrons
		Tota	al 3	