| Question | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{1} \mathbf{a}$ | C <br> high(est) heat conductivity (1) <br> high melting point (1) | no mark for choice <br> allow a (very) good heat conductor <br> allow will not melt when heated on a stove / does not melt easily |  |
|  | idea of (close packed) positive metal ions (1) <br> idea electrons interspersed within the particles <br> drawn / sea of electrons / delocalised electrons (1) <br> electrons can move / free electrons / electrons can A due to a (fairly) high melting point (1) <br> carry the current (1) | allow D due to good heat conductivity (1) and either high melting <br> point or low density / lightweight (1) <br> ignore light <br> innore other properties |  |
|  |  |  |  |


| Question |  | answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 2 | (a) | (add up number of electrons) and this is the atomic number (and check on periodic table) (1) | 1 | allow has 20 electrons and on periodic table element number 20 is calcium <br> allow element is in Group 2 and Period 4 <br> it has 20 electrons on its own is not sufficient |
|  | (b) | one shared pair of electrons between the chlorine atoms (1) rest of outer shells correct (1) | 2 | allow electrons to be all crosses or all dots <br> ignore inner shell electrons even if incorrect <br> do not allow diagams with charges / diagrams with double bonds $=0$ marks |
|  | (c) | sodium (atoms) lose electrons (1) chlorine (atoms) gain electrons (1) | 2 | allow sodium ions have more protons than electrons not sodium ions lose electrons allow chloride ions have more electrons than protons not chloride ions gain electrons |


| (d) | (chlorine molecule) gains electron(s) (1) | 1 |  |
| :---: | :---: | :---: | :---: |
| (e) | $\mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$ <br> OR $\mathrm{Cl}_{2}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{-}$ <br> correct formulae (1) correct balancing - dependent on correct formulae (1) | 2 | ignore state symbols <br> allow $=$ instead of $\rightarrow$ <br> allow any correct multiple including fractions <br> not \& or and instead of + <br> allow one mark for correct equation with minor errors of <br> subscript, superscript and case eg $\mathrm{cl2}+2 \mathrm{KI} \rightarrow 2 \mathrm{KCl}+\mathrm{I}^{2}$ |
|  | Total | 8 |  |


| Question |  | Answer | Marks | Guidance |
| :--- | :--- | :--- | :---: | :--- |
| 3 | (a) | weak forces between the layers (1) <br> which are easy to break (so layers can slide over each <br> other) (1) | 2 | allow van der Waals' forces between layers / weak <br> intermolecular forces <br> not weak covalent bonds between layers |
|  | (b) | large number of strong (covalent) bonds (1) <br> needs lots of energy to break / AW (1) | 2 | allow giant molecular structure or giant covalent structure / <br> large number of strong bonds (between atoms) <br> allow heat for energy but ignore high temperature <br> any mention of intermolecular bonds / forces scores $\mathbf{0}$ |


| Question |  | Answer | Marks | Guidance |
| :--- | :--- | :--- | :---: | :---: | :--- |
| $\mathbf{4}$ | (a) | carbon dioxide $/ \mathrm{CO}_{2}(1)$ | 1 | ignore $\mathrm{CO} / \mathrm{CO}^{2}$ <br> ignore steam |
|  | (b) | the protein molecule is denatured / <br> the shape of the protein molecule changes (1) | 1 | ignore protein molecule is broken down <br> allow structure changes <br> allow intermolecular forces are broken |
|  |  |  | $\mathbf{2}$ |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 5 a | B (1) <br> not poisonous (1) <br> no smell (1) | 3 | A or C scores 0 for the question <br> allow ora, eg $A$ is not suitable as it is poisonous (1) <br> allow ora, eg $D$ is not suitable as it has a smell (1) <br> allow $\mathbf{D}$ since it is not poisonous (1) |
| b i |  | 2 | allow one mark if the correct labels are swapped around <br> allow a straight line for the tail <br> ignore water loving / water hating |
| ii | any two from: <br> cell walls rupture (1) <br> (resulting in) loss of (rigid) structure / a softer texture (1) <br> starch grains swell up (1) | 2 | allow cell walls break down or burst (1) ignore cellulose breaks down <br> allow potato becomes softer (1) <br> allow starch (molecules) swell up (1) ignore cells swell up ignore references to surface area <br> ignore references to denaturing ignore references to proteins |
|  | Total | 7 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 6 a i | W (1) | 1 | allow sodium / Na |
| ii | Z (1) | 1 | allow argon / Ar |
| iii | $\mathbf{W}$ and $\mathbf{Y}$ (1) | 1 | both required but order is unimportant <br> allow sodium or Na and chlorine or Cl |
| b | At least one pair of electrons shared correctly between nitrogen and hydrogen (1) <br> remainder of structure correct (1) | 2 | can use all dots or all crosses <br> not ionic structures $=0$ for the question <br> allow Lewis diagrams i.e. without circles <br> allow lone pair electrons as two single electrons <br> ignore inner electrons on nitrogen |
| c | solid - ions not free / ions cannot move / ions held in a lattice / ions in a giant structure (1) <br> dissolved in water - ions can move (1) | 2 | ignore electrons / particles cannot move in a solid <br> allow has free ions <br> not electrons can move in a liquid <br> ignore particles can move in a liquid |
|  | Total | 7 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 7 a | melting point of sodium - any value between 90 and 130 (1) <br> atomic radius of rubidium - any value between 0.250 and 0.280 (1) | 2 |  |
| b | $\begin{aligned} & 2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \\ & \text { correct formulae (1) } \\ & \text { balancing - dependent on correct formulae (1) } \end{aligned}$ | 2 | allow any correct multiple including fractions e.g. $4 \mathrm{Na}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow$ $4 \mathrm{NaOH}+2 \mathrm{H}_{2}$ <br> allow $=$ or $\leftrightarrows$ for arrow <br> not 'and' or \& for + <br> allow one mark for correct balanced equation with minor errors of case, subscript or superscript $\text { e.g. } 2 \mathrm{NA}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}^{2}(1)$ |
| c | all have one electron in their outer shell (1) | 1 | allow orbit or energy level rather than shell <br> allow have same number of electrons in outer shell (1) <br> allow all lose one electron to make an ion / all lose one electron to get a stable outer shell / all lose 1 electron to get a stable outer octet / all lose 1 electron to get a complete outer shell (1) <br> they all lose 1 electron is not sufficient on its own <br> all have a single electron is not sufficient <br> ignore to make stable atom |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| d | correct sodium ion / 2.8 (1) <br> correct fluoride ion / 2.8 (1) | 2 | two correct electronic structures but no charges award one mark two correct charges with incorrect electronic structure award one mark <br> one structure of 2,8 but unlabelled is not sufficient but allow both have a structure of 2,8 (1) <br> the ionic charges must not be shown in the nucleus <br> award 0 marks for structures with shared electrons <br> One electronic structure must be labelled in some way to indicate which ion is which in order to score two marks. <br> allow answers showing the transfer of electrons providing the same electrons are not shown twice <br> all electrons can be dots or crosses |
|  | Total | 7 |  |



